Differential axonal conduction patterns of mechano-sensitive and mechano-insensitive nociceptors--a combined experimental and modelling study

PLoS One. 2014 Aug 19;9(8):e103556. doi: 10.1371/journal.pone.0103556. eCollection 2014.

Abstract

Cutaneous pain sensations are mediated largely by C-nociceptors consisting of both mechano-sensitive (CM) and mechano-insensitive (CMi) fibres that can be distinguished from one another according to their characteristic axonal properties. In healthy skin and relative to CMi fibres, CM fibres show a higher initial conduction velocity, less activity-dependent conduction velocity slowing, and less prominent post-spike supernormality. However, after sensitization with nerve growth factor, the electrical signature of CMi fibres changes towards a profile similar to that of CM fibres. Here we take a combined experimental and modelling approach to examine the molecular basis of such alterations to the excitation thresholds. Changes in electrical activation thresholds and activity-dependent slowing were examined in vivo using single-fibre recordings of CM and CMi fibres in domestic pigs following NGF application. Using computational modelling, we investigated which axonal mechanisms contribute most to the electrophysiological differences between the fibre classes. Simulations of axonal conduction suggest that the differences between CMi and CM fibres are strongly influenced by the densities of the delayed rectifier potassium channel (Kdr), the voltage-gated sodium channels NaV1.7 and NaV1.8, and the Na+/K+-ATPase. Specifically, the CM fibre profile required less Kdr and NaV1.8 in combination with more NaV1.7 and Na+/K+-ATPase. The difference between CM and CMi fibres is thus likely to reflect a relative rather than an absolute difference in protein expression. In support of this, it was possible to replicate the experimental reduction of the ADS pattern of CMi nociceptors towards a CM-like pattern following intradermal injection of nerve growth factor by decreasing the contribution of Kdr (by 50%), increasing the Na+/K+-ATPase (by 10%), and reducing the branch length from 2 cm to 1 cm. The findings highlight key molecules that potentially contribute to the NGF-induced switch in nociceptors phenotype, in particular NaV1.7 which has already been identified clinically as a principal contributor to chronic pain states such as inherited erythromelalgia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / drug effects
  • Action Potentials / physiology
  • Animals
  • Axons / drug effects
  • Axons / physiology
  • Delayed Rectifier Potassium Channels / genetics
  • Delayed Rectifier Potassium Channels / metabolism
  • Electric Stimulation
  • Femoral Nerve / drug effects
  • Femoral Nerve / physiology*
  • Gene Expression
  • Injections, Intradermal
  • Mechanoreceptors / drug effects
  • Mechanoreceptors / metabolism*
  • Mechanotransduction, Cellular
  • NAV1.7 Voltage-Gated Sodium Channel / genetics
  • NAV1.7 Voltage-Gated Sodium Channel / metabolism
  • NAV1.8 Voltage-Gated Sodium Channel / genetics
  • NAV1.8 Voltage-Gated Sodium Channel / metabolism
  • Nerve Fibers, Unmyelinated / drug effects
  • Nerve Fibers, Unmyelinated / physiology*
  • Nerve Growth Factor / administration & dosage
  • Neural Conduction / drug effects
  • Neural Conduction / physiology
  • Nociception / drug effects
  • Nociception / physiology*
  • Nociceptors / drug effects
  • Nociceptors / physiology*
  • Skin / innervation
  • Sodium-Potassium-Exchanging ATPase / genetics
  • Sodium-Potassium-Exchanging ATPase / metabolism
  • Swine

Substances

  • Delayed Rectifier Potassium Channels
  • NAV1.7 Voltage-Gated Sodium Channel
  • NAV1.8 Voltage-Gated Sodium Channel
  • Nerve Growth Factor
  • Sodium-Potassium-Exchanging ATPase

Grants and funding

This study was funded by the Swedish Research council, VR 621-2007-4223, http://www.vr.se/; the Pain Excellence Consortium Baden-Württemberg, Germany; and the IASP grant to OO, http://www.iasp-pain.org/. Research funding was received from Astra-Zeneca R&D Södertälje, Sweden, http://www.astrazeneca.se/home/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.