On the properties and origin of the GABAB inhibitory postsynaptic potential recorded in morphologically identified projection cells of the cat dorsal lateral geniculate nucleus

Neuroscience. 1989;33(1):23-33. doi: 10.1016/0306-4522(89)90307-2.

Abstract

Intracellular recordings were performed from projection cells of the cat dorsal lateral geniculate nucleus in vitro to investigate the properties and origin of optic tract evoked inhibitory postsynaptic potentials mediated by GABAB receptors and their relationship to the physiologically different cell classes present in this nucleus. In all three main laminae of the dorsal lateral geniculate nucleus, stimulation of the optic tract evoked an excitatory postsynaptic potential followed by two inhibitory postsynaptic potentials. The first is a GABAA receptor mediated inhibitory postsynaptic potential since it was blocked by bicuculline, reversed in polarity following intracellular Cl- injection and had a reversal potential similar to the bicuculline sensitive hyperpolarizing effect of GABA. The second is a GABAB receptor mediated inhibitory postsynaptic potential. Its amplitude was not linearly related to membrane potential (maximal amplitude at -60 mV), it decreased when using frequencies of stimulation higher than 0.05 Hz and it was reversibly increased by addition of bicuculline to the perfusion medium. The reversal potential of GABAB inhibitory postsynaptic potentials was dependent on the extracellular K+ concentration but did not change in the presence of bicuculline or when recording with Cl- filled microelectrodes. While GABAA inhibitory postsynaptic potentials always abolished repetitive firing of projection cells, GABAB inhibitory postsynaptic potentials were able to block weak firing but unable to decrease strong activation of projection cells evoked by direct current injection. Optic tract evoked GABAB (as well as GABAA) inhibitory postsynaptic potentials could be recorded in slices which did not include the perigeniculate nucleus, thus indicating that they are generated by the interneurons of the dorsal lateral geniculate nucleus. Using intracellular injection of horseradish peroxidase, we have found that the GABAB inhibitory postsynaptic potentials are present in projection cells showing many different types of neuronal morphologies. In conclusion, GABA released from interneurons in the dorsal lateral geniculate nucleus is capable of evoking an early, short-lasting GABAA and a late, long-lasting GABAB inhibitory postsynaptic potential in projection cells with diverse morphology, indicating that the late inhibition in the dorsal lateral geniculate nucleus can no longer be associated exclusively with the recurrent inhibitory pathway through the perigeniculate nucleus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bicuculline / pharmacology*
  • Cats
  • Electric Stimulation
  • Geniculate Bodies / drug effects
  • Geniculate Bodies / physiology*
  • In Vitro Techniques
  • Neural Inhibition / drug effects*
  • Receptors, GABA-A / drug effects
  • Receptors, GABA-A / physiology*

Substances

  • Receptors, GABA-A
  • Bicuculline