Altered excitatory and inhibitory inputs to striatal medium-sized spiny neurons and cortical pyramidal neurons in the Q175 mouse model of Huntington's disease

J Neurophysiol. 2015 Apr 1;113(7):2953-66. doi: 10.1152/jn.01056.2014. Epub 2015 Feb 11.

Abstract

The Q175 knockin mouse model of Huntington's disease (HD) carries a CAG trinucleotide expansion of the human mutant huntingtin allele in its native mouse genomic context and recapitulates the genotype more closely than transgenic models. In this study we examined the progression of changes in intrinsic membrane properties and excitatory and inhibitory synaptic transmission, using whole cell patch-clamp recordings of medium-sized spiny neurons (MSNs) in the dorsolateral striatum and cortical pyramidal neurons (CPNs) in layers 2/3 of the primary motor cortex in brain slices from heterozygous (Q175(+/-)) and homozygous (Q175(+/+)) mice. Input resistance in MSNs from Q175(+/+) and Q175(+/-) mice was significantly increased compared with wild-type (WT) littermates beginning at 2 mo. Furthermore, the frequency of spontaneous and miniature excitatory postsynaptic currents (EPSCs) was significantly reduced in MSNs from Q175(+/+) and Q175(+/-) mice compared with WTs beginning at 7 mo. In contrast, the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) and IPSC-to-EPSC ratios were increased in MSNs from Q175(+/+) mice beginning at 2 mo. Morphologically, significant decreases in spine density of MSNs from Q175(+/-) and Q175(+/+) mice occurred at 7 and 12 mo. In CPNs, sIPSC frequencies and IPSC-to-EPSC ratios were significantly increased in Q175(+/-) mice compared with WTs at 12 mo. There were no changes in intrinsic membrane properties or morphology. In summary, we show a number of alterations in electrophysiological and morphological properties of MSNs in Q175 mice that are similar to other HD mouse models. However, unlike other models, CPN inhibitory activity is increased in Q175(+/-) mice, indicating reduced cortical excitability.

Keywords: Huntington's disease; Q175; cerebral cortex; electrophysiology; striatum.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Size
  • Corpus Striatum / pathology
  • Corpus Striatum / physiopathology*
  • Disease Models, Animal*
  • Excitatory Postsynaptic Potentials*
  • Female
  • Gene Knock-In Techniques
  • Huntington Disease / physiopathology*
  • Male
  • Mice
  • Neural Inhibition*
  • Neuronal Plasticity
  • Pyramidal Cells*