Surgical injury in the neonatal rat alters the adult pattern of descending modulation from the rostroventral medulla

Anesthesiology. 2015 Jun;122(6):1391-400. doi: 10.1097/ALN.0000000000000658.

Abstract

Background: Neonatal pain and injury can alter long-term sensory thresholds. Descending rostroventral medulla (RVM) pathways can inhibit or facilitate spinal nociceptive processing in adulthood. As these pathways undergo significant postnatal maturation, the authors evaluated long-term effects of neonatal surgical injury on RVM descending modulation.

Methods: Plantar hind paw or forepaw incisions were performed in anesthetized postnatal day (P)3 Sprague-Dawley rats. Controls received anesthesia only. Hind limb mechanical and thermal withdrawal thresholds were measured to 6 weeks of age (adult). Additional groups received pre- and post-incision sciatic nerve levobupivacaine or saline. Hind paw nociceptive reflex sensitivity was quantified in anesthetized adult rats using biceps femoris electromyography, and the effect of RVM electrical stimulation (5-200 μA) measured as percentage change from baseline.

Results: In adult rats with previous neonatal incision (n = 9), all intensities of RVM stimulation decreased hind limb reflex sensitivity, in contrast to the typical bimodal pattern of facilitation and inhibition with increasing RVM stimulus intensity in controls (n = 5) (uninjured vs. neonatally incised, P < 0.001). Neonatal incision of the contralateral hind paw or forepaw also resulted in RVM inhibition of hind paw nociceptive reflexes at all stimulation intensities. Behavioral mechanical threshold (mean ± SEM, 28.1 ± 8 vs. 21.3 ± 1.2 g, P < 0.001) and thermal latency (7.1 ± 0.4 vs. 5.3 ± 0.3 s, P < 0.05) were increased in both hind paws after unilateral neonatal incision. Neonatal perioperative sciatic nerve blockade prevented injury-induced alterations in RVM descending control.

Conclusions: Neonatal surgical injury alters the postnatal development of RVM descending control, resulting in a predominance of descending inhibition and generalized reduction in baseline reflex sensitivity. Prevention by local anesthetic blockade highlights the importance of neonatal perioperative analgesia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anesthetics, Local / pharmacology
  • Animals
  • Animals, Newborn
  • Behavior, Animal / physiology
  • Electric Stimulation
  • Female
  • Foot / innervation
  • Hyperalgesia / psychology
  • Male
  • Medulla Oblongata / growth & development
  • Medulla Oblongata / injuries*
  • Medulla Oblongata / surgery*
  • Nerve Block
  • Neurons, Afferent / drug effects
  • Rats
  • Rats, Sprague-Dawley
  • Reflex / physiology
  • Sciatic Nerve / drug effects
  • Sciatic Nerve / injuries
  • Sensory Thresholds

Substances

  • Anesthetics, Local