Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potential

J Physiol. 1989 Jul:414:265-82. doi: 10.1113/jphysiol.1989.sp017687.

Abstract

1. The effect of serotonin on the firing properties of motoneurones was studied in transverse sections of the adult turtle spinal cord in vitro with intracellular recording techniques. 2. In normal medium, turtle motoneurones adapt from an initial high frequency to a low steady firing during a depolarizing current pulse. In the presence of serotonin (4-100 microM) motoneurones responded with accelerated firing and a frequency jump during a depolarizing current pulse followed by an after-depolarization outlasting the stimulus. From a depolarized holding potential motoneuronal activity was shifted between two stable states by brief depolarizing and hyperpolarizing current pulses. As an expression of this bistable firing behaviour, the frequency-current relation in response to a triangular current injection was counter-clockwise in serotonin while clockwise in normal medium. 3. The delay to onset of the frequency jump was shortened as the amplitude of the activation pulse was increased. From a positive holding potential the after-depolarization exceeded spike threshold and its duration increased with an increase in steady bias current. The effect of serotonin on turtle motoneurones could be blocked by methysergide (10 microM). 4. When action potentials were depressed by tetrodotoxin, a voltage-dependent, non-inactivating plateau potential, intrinsic to the motoneurone, was revealed. Activation of this voltage plateau provides the motoneurones with two stable states of firing. The apparent input resistance was 2-4-fold lower during the plateau than at rest. 5. The serotonin-induced plateau potential was Ca2+-dependent and was blocked when Ca2+ was replaced by either Co2+ (3 mM) or Mn2+ (3 mM). 6. The Ca2+ plateau was blocked by nifedipine (1-15 microM). 7. Serotonin reduced the slow after-hyperpolarization following action potentials. The change in balance between inward and outward currents seems to be sufficient to reveal the plateau response. 8. Although a small plateau response was induced by Bay K 8644 (1-15 microM), this L-channel agonist could not reproduce the pronounced effect of serotonin. 9. It is concluded that serotonin induces a Ca2+-dependent and nifedipine-sensitive plateau potential in turtle motoneurones primarily by reducing a K+-current responsible for the slow after-hyperpolarization.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Electrophysiology
  • Motor Neurons / metabolism
  • Motor Neurons / physiology*
  • Nifedipine / pharmacology*
  • Serotonin / pharmacology*
  • Serotonin Antagonists / pharmacology
  • Spinal Cord / cytology
  • Spinal Cord / physiology
  • Turtles / physiology*

Substances

  • Serotonin Antagonists
  • Serotonin
  • Nifedipine
  • Calcium