Endolysosomal Deficits Augment Mitochondria Pathology in Spinal Motor Neurons of Asymptomatic fALS Mice

Neuron. 2015 Jul 15;87(2):355-70. doi: 10.1016/j.neuron.2015.06.026.

Abstract

One pathological hallmark in ALS motor neurons (MNs) is axonal accumulation of damaged mitochondria. A fundamental question remains: does reduced degradation of those mitochondria by an impaired autophagy-lysosomal system contribute to mitochondrial pathology? We reveal MN-targeted progressive lysosomal deficits accompanied by impaired autophagic degradation beginning at asymptomatic stages in fALS-linked hSOD1(G93A) mice. Lysosomal deficits result in accumulation of autophagic vacuoles engulfing damaged mitochondria along MN axons. Live imaging of spinal MNs from the adult disease mice demonstrates impaired dynein-driven retrograde transport of late endosomes (LEs). Expressing dynein-adaptor snapin reverses transport defects by competing with hSOD1(G93A) for binding dynein, thus rescuing autophagy-lysosomal deficits, enhancing mitochondrial turnover, improving MN survival, and ameliorating the disease phenotype in hSOD1(G93A) mice. Our study provides a new mechanistic link for hSOD1(G93A)-mediated impairment of LE transport to autophagy-lysosomal deficits and mitochondrial pathology. Understanding these early pathological events benefits development of new therapeutic interventions for fALS-linked MN degeneration.

Publication types

  • Research Support, N.I.H., Intramural

MeSH terms

  • Age Factors
  • Amyotrophic Lateral Sclerosis / drug therapy
  • Amyotrophic Lateral Sclerosis / genetics
  • Amyotrophic Lateral Sclerosis / pathology*
  • Animals
  • Autophagy
  • Cells, Cultured
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism
  • Disease Models, Animal
  • Disease Progression
  • Gene Expression Regulation / genetics
  • Humans
  • Lysosomes / pathology*
  • Membrane Potential, Mitochondrial / drug effects
  • Membrane Potential, Mitochondrial / genetics
  • Mice
  • Mice, Transgenic
  • Mitochondria / pathology*
  • Neurons / drug effects
  • Neurons / pathology*
  • Neurons / ultrastructure*
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism
  • Spinal Cord / pathology*
  • Superoxide Dismutase / genetics
  • Time Factors
  • Transduction, Genetic
  • Ubiquitin-Protein Ligases
  • Vesicular Transport Proteins / therapeutic use

Substances

  • DNA-Binding Proteins
  • Nuclear Proteins
  • Snapin protein, mouse
  • Vesicular Transport Proteins
  • SOD1 G93A protein
  • Superoxide Dismutase
  • Trim27 protein, mouse
  • Ubiquitin-Protein Ligases