Single-unit analysis of pattern-motion selective properties in the middle temporal visual area (MT)

Exp Brain Res. 1989;75(1):53-64. doi: 10.1007/BF00248530.

Abstract

The middle temporal visual area (MT) in macaque extrastriate cortex is characterized by a high proportion of neurons selective for the direction of stimulus motion, and is thus thought to play an important role in motion perception. Previous studies identified a population of cells in MT that appeared capable of coding the motion of whole visual patterns independent of the motions of contours within them (Gizzi et al. 1983; Movshon et al. 1985). These "pattern-motion selective" neurons are unlike motion sensitive cells that have been observed at earlier stages of the visual system. Using very different criteria, we have also previously identified an apparently functionally distinct group of MT neurons (Albright 1984). We predicted that these "Type II" neurons correspond to the pattern-motion neurons. In the present study, we have applied both sets of criteria to individual neurons in MT and found that these two differently defined sets of cells actually form the same population. These results support the idea that MT contributes to a specialized type of motion processing which reflects the integrity of normal perception.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Evoked Potentials, Visual
  • Macaca fascicularis
  • Male
  • Motion Perception / physiology*
  • Photic Stimulation
  • Temporal Lobe / physiology*
  • Visual Pathways / physiology*