Cocaine Experience Enhances Thalamo-Accumbens N-Methyl-D-Aspartate Receptor Function

Biol Psychiatry. 2016 Nov 1;80(9):671-681. doi: 10.1016/j.biopsych.2016.04.002. Epub 2016 Apr 7.

Abstract

Background: Excitatory synaptic transmission in the nucleus accumbens (NAc) is a key biological substrate underlying behavioral responses to psychostimulants and susceptibility to relapse. Studies have demonstrated that cocaine induces changes in glutamatergic signaling at distinct inputs to the NAc. However, consequences of cocaine experience on synaptic transmission from the midline nuclei of the thalamus (mThal) to the NAc have yet to be reported.

Methods: To examine synapses from specific NAc core inputs, we recorded light-evoked excitatory postsynaptic currents following viral-mediated expression of channelrhodopsin-2 in the mThal, prefrontal cortex (PFC), or basolateral amygdala from acute brain slices. To identify NAc medium spiny neuron subtypes, we used mice expressing tdTomato driven by the promoter for dopamine receptor subtype 1 (D1). We recorded N-methyl-D-aspartate receptor (NMDAR) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) properties to evaluate synaptic adaptations induced by cocaine experience, a 5-day cocaine exposure followed by 2 weeks of abstinence.

Results: Excitatory inputs to the NAc core displayed differential NMDAR properties, and cocaine experience uniquely altered AMPAR and NMDAR properties at mThal-D1(+), mThal-D1(-), and PFC-D1(+) synapses, but not at PFC-D1(-) synapses. Finally, at mThal-D1(+) synapses, cocaine enhanced GluN2C/D function and NMDAR-dependent synaptic plasticity.

Conclusions: Our results identify contrasting cocaine-induced AMPAR and NMDAR modifications at mThal-NAc and PFC-NAc core synapses. These changes include an enhancement of NMDAR function and plasticity at mThal-D1(+) synapses. Incorporation of GluN2C/D-containing NMDARs most likely underlies these phenomena and represents a potential therapeutic target for psychostimulant use disorders.

Keywords: Addiction; Cocaine; NMDAR; Nucleus accumbens; Prefrontal cortex; Thalamus.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Basolateral Nuclear Complex / drug effects
  • Basolateral Nuclear Complex / physiology
  • Cocaine / administration & dosage*
  • Excitatory Postsynaptic Potentials / drug effects*
  • Long-Term Synaptic Depression / drug effects
  • Male
  • Mice
  • Mice, Transgenic
  • Midline Thalamic Nuclei / drug effects*
  • Midline Thalamic Nuclei / physiology*
  • Neural Pathways / drug effects
  • Neural Pathways / physiology
  • Nucleus Accumbens / drug effects*
  • Nucleus Accumbens / physiology*
  • Optogenetics
  • Prefrontal Cortex / drug effects
  • Prefrontal Cortex / physiology
  • Receptors, AMPA / physiology
  • Receptors, N-Methyl-D-Aspartate / physiology*

Substances

  • NR2C NMDA receptor
  • NR2D NMDA receptor
  • Receptors, AMPA
  • Receptors, N-Methyl-D-Aspartate
  • Cocaine