The detection of higher-order acoustic transitions is reflected in the N1 ERP

Psychophysiology. 2018 Jul;55(7):e13063. doi: 10.1111/psyp.13063. Epub 2018 Jan 30.

Abstract

The auditory system features various types of dedicated change detectors enabling the rapid parsing of auditory stimulation into distinct events. The activity of such detectors is reflected by the N1 ERP. Interestingly, certain acoustic transitions show an asymmetric N1 elicitation pattern: whereas first-order transitions (e.g., a change from a segment of constant frequency to a frequency glide [c-to-g change]) elicit N1, higher-order transitions (e.g., glide-to-constant [g-to-c] changes) do not. Consensus attributes this asymmetry to the absence of any available sensory mechanism that is able to rapidly detect higher-order changes. In contrast, our study provides compelling evidence for such a mechanism. We collected electrophysiological and behavioral data in a transient-detection paradigm. In each condition, a random (50%-50%) sequence of two types of tones occurred, which did or did not contain a transition (e.g., c-to-g and constant stimuli or g-to-c and glide tones). Additionally, the rate of pitch change of the glide varied (i.e., 10 vs. 40 semitones per second) in order to increase the number of responding neural assemblies. The rate manipulation modulated transient ERPs and behavioral detection performance for g-to-c transitions much stronger than for c-to-g transitions. The topographic and tomographic analyses suggest that the N1 response to c-to-g and also to g-to-c transitions emerged from the superior temporal gyrus. This strongly supports a sensory mechanism that allows the fast detection of higher-order changes.

Keywords: ERPs; N1; attention; change detection; source localization; transition.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation
  • Auditory Cortex / physiology*
  • Auditory Perception / physiology*
  • Electroencephalography
  • Evoked Potentials, Auditory*
  • Female
  • Humans
  • Male