Discovering acoustic structure of novel sounds

J Acoust Soc Am. 2018 Apr;143(4):2460. doi: 10.1121/1.5031018.

Abstract

Natural sounds have substantial acoustic structure (predictability, nonrandomness) in their spectral and temporal compositions. Listeners are expected to exploit this structure to distinguish simultaneous sound sources; however, previous studies confounded acoustic structure and listening experience. Here, sensitivity to acoustic structure in novel sounds was measured in discrimination and identification tasks. Complementary signal-processing strategies independently varied relative acoustic entropy (the inverse of acoustic structure) across frequency or time. In one condition, instantaneous frequency of low-pass-filtered 300-ms random noise was rescaled to 5 kHz bandwidth and resynthesized. In another condition, the instantaneous frequency of a short gated 5-kHz noise was resampled up to 300 ms. In both cases, entropy relative to full bandwidth or full duration was a fraction of that in 300-ms noise sampled at 10 kHz. Discrimination of sounds improved with less relative entropy. Listeners identified a probe sound as a target sound (1%, 3.2%, or 10% relative entropy) that repeated amidst distractor sounds (1%, 10%, or 100% relative entropy) at 0 dB SNR. Performance depended on differences in relative entropy between targets and background. Lower-relative-entropy targets were better identified against higher-relative-entropy distractors than lower-relative-entropy distractors; higher-relative-entropy targets were better identified amidst lower-relative-entropy distractors. Results were consistent across signal-processing strategies.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation / methods*
  • Auditory Perception / physiology*
  • Case-Control Studies
  • Discrimination, Psychological / physiology*
  • Humans
  • Psychoacoustics*
  • Signal Processing, Computer-Assisted
  • Sound Localization / physiology*
  • Sound*