Neonatal deafening alters nonpyramidal dendrite orientation in auditory cortex: a computer microscope study in the rabbit

J Comp Neurol. 1988 Jan 1;267(1):92-106. doi: 10.1002/cne.902670107.

Abstract

In order to examine the influence of afferent input on nonpyramidal dendrite development in the auditory cortex, unilateral deafening was carried out in neonatal rabbits at birth, approximately 6 days prior to the onset of hearing. Deafening was produced by surgical removal of the incus and stapes ossicles, aspiration of the cochlear perilymph, and kanamycin injection into the oval window. At 60 days of age, acoustic stimulation of the deafened ear was unable to evoke auditory brainstem responses. The brains of experimental and littermate control rabbits were processed according to the Golgi-Cox Nissl method. The dendritic systems of lamina III/IV spine-free nonpyramidal cells in the auditory cortex contralateral to the deafened ear were digitized from 340-micron-thick coronal sections with the aid of a computer microscope. Three-dimensional spatial and statistical analyses revealed that nonpyramidal dendrite length in neonatally deafened rabbits increased 27% relative to littermate controls. A fan-in projection analysis revealed that the increased dendrite length in the deafened animals was maximum in the tangential direction and toward the white matter. Computer rotation of digitized neurons from neonatally deafened rabbits also revealed evidence of abnormal dendritic growth in the form of recurved dendrites. We interpret our results to indicate that unilateral cochlear destruction early in development causes a reorganization of the ascending auditory pathway which extends to the contralateral cerebral cortex. Because the auditory cortex contralateral to the deafened ear still receives acoustic input from the undamaged ipsilateral ear, normal nonpyramidal dendritic growth in the auditory cortex is, in part, dependent upon afferent activity arising from both ears.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Animals, Newborn
  • Auditory Cortex / pathology*
  • Auditory Cortex / physiopathology
  • Auditory Pathways / pathology*
  • Auditory Pathways / physiopathology
  • Cell Count
  • Cochlea / pathology
  • Deafness / pathology*
  • Deafness / physiopathology
  • Dendrites / pathology*
  • Dendrites / physiopathology
  • Image Processing, Computer-Assisted
  • Rabbits