Mathematical treatment of context effects in phoneme and word recognition

J Acoust Soc Am. 1988 Jul;84(1):101-14. doi: 10.1121/1.396976.

Abstract

Percent recognition of phonemes and whole syllables, measured in both consonant-vowel-consonant (CVC) words and CVC nonsense syllables, is reported for normal young adults listening at four signal-to-noise (S/N) ratios. Similar data are reported for the recognition of words and whole sentences in three types of sentence: high predictability (HP) sentences, with both semantic and syntactic constraints; low predictability (LP) sentences, with primarily syntactic constraints; and zero predictability (ZP) sentences, with neither semantic nor syntactic constraints. The probability of recognition of speech units in context (pc) is shown to be related to the probability of recognition without context (pi) by the equation pc = 1 - (1-pi)k, where k is a constant. The factor k is interpreted as the amount by which the channels of statistically independent information are effectively multiplied when contextual constraints are added. Empirical values of k are approximately 1.3 and 2.7 for word and sentence context, respectively. In a second analysis, the probability of recognition of wholes (pw) is shown to be related to the probability of recognition of the constituent parts (pp) by the equation pw = pjp, where j represents the effective number of statistically independent parts within a whole. The empirically determined mean values of j for nonsense materials are not significantly different from the number of parts in a whole, as predicted by the underlying theory. In CVC words, the value of j is constant at approximately 2.5. In the four-word HP sentences, it falls from approximately 2.5 to approximately 1.6 as the inherent recognition probability for words falls from 100% to 0%, demonstrating an increasing tendency to perceive HP sentences either as wholes, or not at all, as S/N ratio deteriorates.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Humans
  • Language / physiology*
  • Mathematics*
  • Phonetics*
  • Speech Perception / physiology*