Control of echolocation pulses by neurons of the nucleus ambiguus in the rufous horseshoe bat, Rhinolophus rouxi. I. Single unit recordings in the ventral motor nucleus of the laryngeal nerves in spontaneously vocalizing bats

J Comp Physiol A. 1986 Nov;159(5):675-87. doi: 10.1007/BF00612040.

Abstract

The vocal motor control of the larynx was studied with single unit recordings from the efferent motor nucleus (nucleus ambiguus) in the CF-FM-bat Rhinolophus rouxi, spontaneously emitting echolocation sounds. The experiments were performed in a stereotaxic apparatus that allowed differentiation of activities in the recorded nucleus depending on the electrode position (Fig. 1). Echolocation calls and respiration activity were monitored simultaneously, thus it was possible to compare the time course of the motor control activity during respiration with and without concurrent vocalization. Unit discharges were classified as laryngeal motoneuron activity according to their correlation with the time course (onset and end) of echolocation calls and their discharge rate as: Pre-off-tonic, pre-off-phasic, off-pauser, off-tonic, on-chopper, on-tonic, prior-tonic and inhibitory (Fig. 4). The on-chopper and on-tonic discharge patterns were assigned to the motor activity of the lateral cricoarytenoid muscle and the off-pauser and off-tonic discharge patterns to the motor activity of the posterior cricoarytenoid muscle controlling the time course of vocal pulses. Motoneuron activities recorded under the condition of systematically shifted frequencies in the emitted echolocation calls were investigated in Doppler-shift compensating bats responding to electronically simulated echoes. Of all neurons classified as motor control, only units of the pre-off-tonic discharge type (cricothyroid muscle) changed their activity with frequency shifts in the vocalized pulses; they showed a positive linear correlation with the emitted sound frequency (Fig. 6). In addition, single unit activities in strict synchronization to vocalization were recorded, that by their low discharge rate were not valid as motor control, and were considered to represent activities of interneurons or internuclear neurons connecting the nucleus ambiguus with other vocalization- and respiration-centers (Fig. 3c). Electric lesions in the brain stem and iontophoretically applied horseradish peroxidase (HRP) served as references for localization and morphological identification of the recording sites in cell stained brain slices.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chiroptera / physiology*
  • Echolocation / physiology*
  • Electrophysiology
  • Motor Neurons / physiology*
  • Orientation / physiology*
  • Respiration
  • Stereotaxic Techniques
  • Vocalization, Animal / physiology