Swelling and potassium uptake in cultured astrocytes

Can J Physiol Pharmacol. 1987 May;65(5):1051-7. doi: 10.1139/y87-166.

Abstract

The intracellular water content of astrocytes in primary cultures shows a biphasic swelling pattern on exposure to various increased external K+ concentrations over the range of 1.5-100 mM. The two phases (physiological, 1.5-12 mM K+; pathological, 25-100 mM K+) are based on two different mechanisms. Both can be blocked by low Cl- solutions and involve intensive net uptake of K+. However, the physiological phase consists of the activation of a KCl + NaCl carrier, while the Na+ in turn is pumped out by Na+-K+ ATPase, with a resultant net accumulation of KCl. At pathological K+ concentrations the KCl + NaCl carrier is less active because the Na+ driving force, its energy source, is reduced (owing to depolarization by K+). However, the Donnan equilibrium across the cell membrane is heavily disturbed, which leads to passive KCl accumulation. The results suggest that volume changes in cultured glial cells during exposure to high K+ should be taken into consideration since they disguise K+ accumulation when only ion activity is measured.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Astrocytes / drug effects
  • Astrocytes / metabolism*
  • Body Water / metabolism*
  • Cells, Cultured
  • Extracellular Space / metabolism
  • Furosemide / pharmacology
  • Intracellular Fluid / metabolism
  • Membrane Potentials
  • Mice

Substances

  • Furosemide