Plasticity in cat visual cortex restored by electrical stimulation of the locus coeruleus

Neurosci Res. 1985 Jun;2(5):365-86. doi: 10.1016/0168-0102(85)90047-1.

Abstract

It has been proposed that the presence of noradrenaline (NA)-containing terminals and NA-related receptors within the visual cortex is necessary to maintain the high level of neuronal plasticity in the immature visual cortex of kittens. In the present study we wanted to show whether electrical stimulation of the locus coeruleus (LC), which contains the somata of these cortical NA fibers, can restore neuronal plasticity to the normally aplastic visual cortex of juvenile and adult cats. We consistently found a significant loss of binocular cells in the visual cortex of mature animals which had monocular vision for only 12 h dispersed over 6 days (2 h a day, otherwise kept in the dark) in combination with concurrent LC stimulation. This result was interpreted as indicating that endogenous NA released from NA terminals restored susceptibility to monocular vision in the mature visual cortex. We next examined how long the restored plasticity lasts in the same animals after the LC stimulation was ended. The animals revived from the first recording session were either returned to the same daily schedule of brief monocular exposure (light/dark = 2/22 h) as before, or subjected to the usual monocular lid suture and kept in a cat colony environment (light/dark = 16/8 h). The LC electrodes had been removed and no more electrical stimulation was delivered at this stage. In the animals subjected to reiteration of brief monocular exposure, the state of reduced binocularity gradually returned to normal over a period of 2-3 weeks after stopping LC stimulation. We calculated that the revived plasticity disappeared at an average rate of a 22% loss every 7 days. This result sharply contrasted with the result obtained in the animals subjected to usual monocular lid suture. In this test the state of reduced binocularity continued for at least the next 3 weeks, suggesting that the restored plasticity was sustained throughout a period of 3 weeks (longest term tested). The different results obtained in the two paradigms may be explained by the different strength of binocular imbalance in the two tests imposed on the visual cortex in which neuronal plasticity was restored partially.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cats
  • Electric Stimulation
  • Hydroxydopamines / pharmacology
  • Locus Coeruleus / physiology*
  • Neuronal Plasticity* / drug effects
  • Norepinephrine / physiology
  • Oxidopamine
  • Time Factors
  • Visual Cortex / physiology*
  • Visual Fields / drug effects
  • Visual Pathways / physiology

Substances

  • Hydroxydopamines
  • Oxidopamine
  • Norepinephrine