Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis

Brain Res Bull. 1982 Jun;8(6):727-49. doi: 10.1016/0361-9230(82)90101-0.

Abstract

The morphologies, intercellular organization, and cortical projection patterns of putative cholinergic neurons in the basal forebrain of the rat were examined by use of fluorescent tracer histology in combination with the pharmacohistochemical regimen for acetylcholinesterase (AChE). Intensity staining AChE-containing cells projecting to frontal sensorimotor (Area 10), parietal (Area 2), and temporal (Area 4) cortices were found ipsilaterally in nucleus preopticus magnocellularis, in nucleus basalis, and in association with the substantia innominata, the ansa lenticularis, and the lateral hypothalamic area; an essentially rostrocaudal topography was observed for these projections. AChE-containing pathways to cingulate (Area 29) and visual (Area 17) cortices derived from ipsilateral somata associated with the vertical and horizontal limbs of the diagonal band, nucleus preopticus magnocellularis, rostral portions of nucleus basalis, and the substantia innominata. Neurons innervating Area 29 were generally located more rostrally than those giving rise to AChE afferents to Area 17. The vast majority of cells appeared to innervate relatively discrete areas of the cortex. Evidence for collateralization was found only in neurons projecting to visual and cingulate cortices, and these represented only 3.2% of the cells providing AChE afferents to Areas 17 and 29. The basal forebrain AChE projection cells were typically large (greater than 25 micron in maximum cell body extent), and their somata were predominantly oval, with lesser proportions being fusiform or triangular. Many were organized in clusters, particularly in nucleus basalis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acetylcholine / physiology
  • Acetylcholinesterase / metabolism
  • Afferent Pathways / anatomy & histology*
  • Aging
  • Animals
  • Axonal Transport
  • Behavior
  • Brain / anatomy & histology*
  • Cerebral Cortex / anatomy & histology*
  • Female
  • Humans
  • Isoflurophate
  • Male
  • Mental Disorders / physiopathology
  • Nervous System Diseases / physiopathology
  • Rats
  • Rats, Inbred Strains

Substances

  • Isoflurophate
  • Acetylcholinesterase
  • Acetylcholine