The organization of centrifugal projections from the anterior olfactory nucleus, ventral hippocampal rudiment, and piriform cortex to the main olfactory bulb in the hamster: an autoradiographic study

J Comp Neurol. 1981 Dec 10;203(3):475-93. doi: 10.1002/cne.902030310.

Abstract

The centrifugal projections from the various subdivisions of the anterior olfactory nucleus (AON) can be categorized into four groups based on the organization of terminal fields in the main olfactory bulb (MOB). Pars lateralis and dorsalis have bilaterally asymmetric laminar projections to the MOB. The ipsilateral projections terminate primarily in the superficial half of the granule cell layer and in the deep third of the glomerular layer, whereas the contralateral projections terminate primarily in the superficial half of the granule cell layer and do not extend into the glomerular layer. Pars ventralis and posterior have bilaterally symmetric laminar projections with heavy terminations both in the superficial half of the granule cell layer and in the deep third of the glomerular layer. Pars medialis sends predominantly ipsilateral projections to the deep half of the granule cell layer. Pars externa has predominantly contralateral projections with a very narrow terminal field immediately deep to the internal plexiform layer. The projections to the MOB from the ventral hippocampal rudiment (HR) and the piriform cortex (PC) are exclusively ipsilateral. The projections from the ventral HR terminate primarily in the deep half of the granule cell layer. The projections from the PC also terminate predominantly in the granule cell layer, but there is a progressive shifting of terminal fields from the superficial half of this layer toward deeper regions for centrifugal axons arising from progressively more caudal levels of the PC. The laminar termination patterns of cortical afferents to the ipsilateral MOB thus are correlated with the mediolateral axis of the olfactory peduncle and the rostrocaudal axis of the piriform cortex. The centrifugal axons from these various sources enter directly into the granule cell layer of the caudal MOB or pass through the internal plexiform layer of the accessory olfactory bulb to reach the middle and anterior part of the MOB. We have termed these two routes the final common bulb pathway. The centrifugal axons from the laterally situated sources join the anterior and bulbar limbs of the anterior commissure before entering the final common bulbar pathway. In contrast, the centrifugal axons from pars medialis and the ventral HR travel diffusely in the cellular layer of the ipsilateral olfactory peduncle. A small component of the centrifugal projections from the PC travels in association with the lateral olfactory tract.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Autoradiography
  • Cricetinae*
  • Ear, External / physiology
  • Limbic System / physiology*
  • Male
  • Mesocricetus*
  • Olfactory Bulb / physiology*
  • Olfactory Pathways / physiology
  • Synaptic Transmission*