Cholecystokinin depolarizes rat thalamic reticular neurons by suppressing a K+ conductance

J Neurophysiol. 1995 Sep;74(3):990-1000. doi: 10.1152/jn.1995.74.3.990.

Abstract

1. The thalamic reticular nucleus (nRt) is innervated by cholecystokinin (CCK)-containing neurons and contains CCK binding sites. We used tight-seal, whole cell recording techniques with in vitro rat thalamic slices to investigate the action of CCK on neurons in nRt and ventrobasal thalamus (VB). 2. Brief applications of the CCK agonist cholecystokinin octapeptide (26-33) sulfated (CCK8S) evoked prolonged spike discharges in nRt neurons but had no direct effects on VB neuron activity. This selective excitatory action of CCK8S in nRt resulted from a long-lasting membrane depolarization (2-10 min) associated with an increased input resistance. Voltage-clamp recordings revealed that CCK8S reduced membrane conductance by 0.6-3.8 nS, which amounted to 5-54% of the resting conductance of these neurons. 3. The conductance blocked by CCK8S was linear over the range of -50 to -100 mV and reversed near the potassium equilibrium potential. Modifications of extracellular K+ concentration altered the reversal potential of the conductance as predicted by the Nernst equation. The K+ channel blocker Cs+, applied either intracellularly or combined intra- and extracellularly, blocked the response to CCK8S. 4. The CCK8S-induced depolarization persisted after suppression of synaptic transmission by either tetrodotoxin or a low-Ca2+, high-Mg2+ extracellular solution, indicating that the depolarization was primarily due to activation of postsynaptic CCK receptors and not mediated through the release of other neurotransmitters. 5. The selective CCKA antagonists L364,718 and Cam-1481 attenuated the CCK8S-induced depolarization, whereas the CCKB antagonist L365,260 had little or no effect on the depolarization. 6. Our findings indicate that CCK8S, acting via CCKA-type receptors, reduces a K+ leak current, resulting in a long-lasting membrane depolarization that can presumably modify the firing mode of nRt neurons. Through this effect, CCK actions in nRt may strongly influence thalamocortical function.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Action Potentials / drug effects
  • Animals
  • Dose-Response Relationship, Drug
  • Patch-Clamp Techniques
  • Potassium / pharmacology
  • Potassium Channels / drug effects*
  • Rats
  • Rats, Sprague-Dawley
  • Sincalide / pharmacology*
  • Thalamus / drug effects*
  • Time Factors

Substances

  • Potassium Channels
  • Sincalide
  • Potassium