Different climbing fibres innervate separate dendritic regions of the same Purkinje cell in hypogranular cerebellum

J Comp Neurol. 1995 Jul 3;357(3):395-407. doi: 10.1002/cne.903570306.

Abstract

Electrophysiological experiments have shown that in hypogranular cerebella the Purkinje cells are innervated by several climbing fibres. The aim of this paper is to provide morphological evidence for this multiple innervation and to describe the topographical distribution of the different climbing fibres onto the somadendritic region of the Purkinje cell. Experiments have been performed in hypogranular adult Wistar rats lesioned during the first postnatal week by methylazoxymethanol (MAM) or by X-irradiation. Purkinje cells were labelled by an anti-calbindin antibody, whereas climbing fibres were visualised by means of Phaseolus vulgaris leucoagglutinin. Purkinje cells showed variable degrees of abnormality and displacement. Climbing fibres made contact with the dendrites of all kinds of Purkinje cells, including those ectopically positioned whose dendrites branched in the white matter. This shows that Purkinje cells can develop dendritic branching in the absence of granule cells and maintain the capability of interacting with their proper afferents, even when they are severely affected and displaced. In four Purkinje cells we have been able to follow the course of two climbing fibre terminal arbourisations. Almost no terminal branches were present around the Purkinje cell soma, and the whole arbour covered the proximal two-thirds of the Purkinje cell dendritic tree. These arbourisations, after an initial common course along the primary dendrite, distributed to separate dendritic regions. The observation of a single labelled climbing fibre covering a limited region of the dendritic tree was more common. As this finding is never observed in control material, it is concluded that the remaining region is covered by another unlabelled climbing fibre belonging to a different inferior olive neurone. These results represent a morphological demonstration of multiple climbing fibre innervation of the adult Purkinje cell. The maintenance of polyinnervation in the adult, which is consequent to the loss of granule cells, is not associated with a defect in the peridendritic translocation of the olivary arbour. In addition, the strict segregation of the different climbing fibres to distinct territories of the Purkinje cell dendritic tree suggests that each terminal arbourisation acts as a functionally independent unit and prevents other competitors from invading its own target domain.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Afferent Pathways / physiology
  • Animals
  • Axons / chemistry
  • Brain Mapping*
  • Dendrites / physiology*
  • Nerve Fibers / physiology*
  • Purkinje Cells / physiology*
  • Rats
  • Rats, Wistar