Dynamics of visually guided auditory plasticity in the optic tectum of the barn owl

J Neurophysiol. 1995 Feb;73(2):595-614. doi: 10.1152/jn.1995.73.2.595.

Abstract

1. In the optic tectum of normal barn owls, bimodal (auditory-visual) neurons are tuned to the values of interaural time difference (ITD) that are produced by sounds at the locations of their visual receptive fields (VRFs). The auditory tuning of tectal neurons is actively guided by visual experience during development: in the tectum of adult owls reared with an optically displaced visual field, neurons are tuned to abnormal values of ITD that are close to the values produced by sounds at the locations of their optically displaced VRFs. In this study we investigated the dynamics of this experience-dependent plasticity. 2. Owls were raised from shortly after eye-opening (14-22 days of age) with prismatic spectacles that displaced the visual field to the right or left. Starting at approximately 60 days of age, multiunit recordings were made to assess the tuning of tectal neurons to ITD presented via earphones. In the earliest recording sessions (ages 60-80 days), ITD tuning was often close to normal, even though the majority of the owls' previous experience was with an altered correspondence between ITD values and VRF locations. Subsequently, over a period of weeks, responses to the normal range of ITDs were gradually eliminated while responses to values of ITD corresponding with the optically displaced VRF were acquired. 3. At intermediate stages in this process, the ITD tuning at many sites became abnormally broad, so that responses were simultaneously present to both normal values of ITD and to values corresponding with the optically displaced VRF. At this stage the latencies and durations of newly acquired responses systematically exceeded the latencies and durations of the responses to normal values of ITD. 4. Dynamic changes in ITD tuning similar to those recorded in the optic tectum also occurred in the external nucleus of the inferior colliculus (ICX), which provides the major source of ascending auditory input to the tectum. 5. These results suggest the hypothesis that the neural selectivity for ITD in the barn owl's tectum is first established by vision-independent mechanisms and only subsequently calibrated by visual experience. This calibration involves both the elimination of responses to normal values of ITD and the visually guided acquisition of responses to novel values and can be accounted for by plasticity at the level of the ICX.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Auditory Pathways / physiology*
  • Birds / physiology*
  • Ear / physiology
  • Electrophysiology
  • Inferior Colliculi / physiology
  • Neuronal Plasticity / physiology*
  • Reaction Time
  • Superior Colliculi / physiology*
  • Visual Fields
  • Visual Pathways / physiology*