Enhancement of neural synchronization in the anteroventral cochlear nucleus. II. Responses in the tuning curve tail

J Neurophysiol. 1994 Mar;71(3):1037-51. doi: 10.1152/jn.1994.71.3.1037.

Abstract

1. Discharges of neurons in the peripheral auditory system contain information about the temporal features of acoustic stimuli. Phase-locking of neurons in the anteroventral cochlear nucleus (AVCN) is usually reported to be less robust than in auditory nerve (AN) fibers, which provide their major input. In a companion paper we reported that some cells in AVCN of the cat show enhanced phase-locking compared with the AN when stimulated at the frequency to which they are most sensitive [characteristic frequency (CF)]. We called neurons "high-sync" when they showed vector strengths (R, a measure of phase-locking) > or = 0.9. Here we report phase-locking properties to stimuli at frequencies below CF. 2. Horseradish peroxidase-filled glass micropipettes or metal microelectrodes were inserted into the trapezoid body (TB), which is the large output tract of the AVCN. Acoustically driven fibers were classified on the basis of the shape of the poststimulus time (PST) histograms to short tone bursts at CF. We then presented low-frequency tones of increasing SPL and determined the maximum R value at 500 Hz (R500) for each fiber. Using the same experimental protocol we studied phase-locking in the ANs of two animals because maximal R values at the tuning curve tail have not been reported for AN fibers. 3. Although phase-locking in AN fibers is usually assumed to be independent of CF, we found that fibers with CF > 2 kHz tended to have higher R500 values than fibers with CF < or = 2 kHz. Moreover, R500 was > or = 0.9 in 20% (42 of 196) of the fibers studied and could be as high as 0.95. This population of fibers was defined as having "high-sync tails" and consisted almost entirely of fibers with low or medium spontaneous rate. 4. High-CF TB fibers stimulated at 500 Hz showed very high phase-locking. High-sync tails (R500 > or = 0.9) were found in 41 of 70 TB fibers. For a subset of these fibers (1/3 in total: 23 of 70) phase-locking was higher than is ever observed in the AN (R500 > or = 0.95); these fibers were defined as showing synchronization "enhancement." Virtually all fibers showing synchronization enhancement had primary-like-with-notch (PLN) PST histograms. Chopper and primary-like fibers showed high-sync tails for CFs > 3 kHz. 5. Synchronization filter functions were obtained for high-CF AN fibers by determining maximum synchronization for a range of stimuli below CF.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Auditory Pathways / physiology
  • Cats
  • Cochlear Nucleus / physiology*
  • Dominance, Cerebral / physiology
  • Evoked Potentials, Auditory / physiology
  • Hair Cells, Auditory / physiology
  • Loudness Perception / physiology
  • Nerve Fibers / physiology
  • Pitch Discrimination / physiology*
  • Psychoacoustics
  • Sound Localization / physiology
  • Synaptic Transmission / physiology*
  • Vestibulocochlear Nerve / physiology*