Developmentally regulated and spatially restricted antigens of radial glial cells

Dev Dyn. 1993 Aug;197(4):307-18. doi: 10.1002/aja.1001970408.

Abstract

Radial glial cells, present in many parts of the embryonic vertebrate central nervous system (CNS), have been implicated in the guidance of neuroblasts from the ventricular zone to their laminar destinations. Moreover, radial glial cells may be progenitors of some CNS neurons and glia. To gain new insight into the structure and development of these cells, we have generated and characterized a panel of monoclonal antibodies that recognize radial glial cells of the chick optic tectum. Mice were immunized with homogenates of embryonic day (E) 10 tectum, and antibodies were analyzed by immunofluorescence and immunoblotting. We describe here three pairs of antibodies. 1) H5 and a previously generated antibody, R5 (Dräger et al., J. Neurosci. 4:2025, 1984), stain the whole extent of the radial glial cell from E7 to E20. In cultures prepared from E10 tecta, both stain a filamentous meshwork in glial cells but not in neurons. On immunoblots, both recognize a protein of approximately 52 kD that is closely related (or identical) to vimentin. 2) H28 and H29 stain radial glia between E7 and E14, but not later. Moreover, H28 and H29 staining is markedly more intense in the ventricular and intermediate zones than in the laminae of the tectal plate. Both of these antibodies recognize an intracellular epitope in cultured glial cells and a protein of approximately 35 kD on immunoblots. 3) H2 and H27 recognize antigens concentrated in the most superficial processes and endfeet of radial glia in late (E16-E20) embryos. They stain distinct structures in cultured glia, suggesting that they recognize distinct antigens. H27 recognizes a protein of approximately 29 kD on immunoblots. Thus antibodies H5 and R5 are good markers of radial glial cells at all stages, whereas the others define antigens that are developmentally regulated and localized to discrete domains. Together, these antibodies can be used to study temporal and spatial specializations of radial glia.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antigens / analysis*
  • Antigens / physiology
  • Biomarkers / analysis
  • Cell Differentiation / immunology
  • Cell Movement / immunology
  • Cells, Cultured
  • Chick Embryo
  • Neuroglia / chemistry
  • Neuroglia / immunology
  • Neuroglia / physiology*
  • Superior Colliculi / cytology
  • Superior Colliculi / embryology*
  • Superior Colliculi / immunology

Substances

  • Antigens
  • Biomarkers