Association of Drosophila cysteine string proteins with membranes

FEBS Lett. 1996 Feb 19;380(3):251-6. doi: 10.1016/0014-5793(96)00026-9.

Abstract

Cysteine string proteins are putative synaptic vesicle proteins that lack a transmembrane domain. Our analysis shows that Drosophila cysteine string proteins are extensively modified by hydroxylamine-sensitive fatty acylation. This modification could be responsible for association of csp's with membranes. Extensive deacylation of Dcsp's by a 20 h incubation in 1 M hydroxylamine, pH 7.0, or methanolic KOH produces a protein of 6-7 kDa lower mass than untreated Dcsp's. Surprisingly, the hydroxylamine treatment does not cause release of Dcsp's from membranes. On the other hand, alkaline stripping of membranes isolated from Drosophila brain by 0.1 M sodium carbonate, pH 11.5, causes a significant release of Dcsp's from membranes into the cytosol. These results indicate that fatty acylation may not form the main anchor of Dcsp's in membranes. Taking advantage of the endocytotic block in the Drosophila mutant shibire ts1, we analyzed the acylation states of Dcsp's in two stages during synaptic vesicle recycling and found no evidence for an acylation/deacylation cycle of Dcsp's in the brain nerve terminals.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acylation
  • Animals
  • Cell Membrane / metabolism*
  • Drosophila melanogaster / chemistry*
  • Fatty Acids / metabolism
  • HSP40 Heat-Shock Proteins
  • Hydrogen-Ion Concentration
  • Hydroxylamines / pharmacology
  • Membrane Proteins*
  • Methanol / pharmacology
  • Nerve Tissue Proteins / metabolism*
  • Potassium / pharmacology
  • Synaptic Vesicles / metabolism
  • Torpedo

Substances

  • Fatty Acids
  • HSP40 Heat-Shock Proteins
  • Hydroxylamines
  • Membrane Proteins
  • Nerve Tissue Proteins
  • cysteine string protein
  • Potassium
  • Methanol