Taste reception

Physiol Rev. 1996 Jul;76(3):719-66. doi: 10.1152/physrev.1996.76.3.719.

Abstract

Recent research on cellular mechanisms of peripheral taste has defined transduction pathways involving membrane receptors, G proteins, second messengers, and ion channels. Receptors for organic tastants received much attention, because they provide the specificity of a response. Their future cloning will constitute a major advance. Taste transduction typically utilizes two or more pathways in parallel. For instance, sweet-sensitive taste cells of the rat appear to respond to sucrose with activation of adenylyl cyclase, followed by adenosine 3',5'-cyclic monophosphate (cAMP)-dependent membrane events and Ca2+ uptake. The same cells respond differently to some artificial sweeteners, i.e., with activation of phospholipase C (PLC) followed by inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ release from intracellular stores. Some bitter tastants block K+ channels or initiate the cascade receptor G1 protein, PLC, IP3, and Ca2+ release or the cascade receptor alpha-gustducin, phosphodiesterase (PDE), cAMP decrease, and opening of cAMP-blocked channels. Membrane-permeant bitter tastants may elicit a cellular response by interacting with G protein, PLC, or PDE of the above cascades. Salt taste is initiated by current flowing into the taste cell through cation channels located in the apical membrane, even though basolateral channels may also contribute (following salt diffusion through paracellular pathways). In rodents, the Na+-specific component of salt taste is typically mediated by apical amiloride-sensitive Na+ channels, but less specific and not amiloride-sensitive taste components exist in addition. Sour taste may in part be mediated by amiloride-sensitive Na+ channels conducting protons, but other mechanisms certainly contribute. Thus the transduction of taste cells generally comprises parallel pathways. Furthermore, the transduction pathways vary with the location of taste buds on the tongue and, of course, across species of animals. To identify these pathways, to understand how they are controlled and why they evolved to this complexity are major goals of present research.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Ion Channels / physiology
  • Rats
  • Taste / physiology*
  • Taste Buds / physiology*

Substances

  • Ion Channels