Volume-activated Cl- channels

Gen Pharmacol. 1996 Oct;27(7):1131-40. doi: 10.1016/s0306-3623(96)00061-4.

Abstract

1. An increase in cell volume activates, in most mammalian cells, a Cl- current, ICl,vol. This current is involved in a variety of cellular functions, such as the maintenance of a constant cell volume, pH regulation, and control of membrane potential. It might also play a role in the regulation of cell proliferation and in the processes that control transition from proliferation to differentiation. This review focuses on various aspects of this current, including its biophysical characterisation and its functional role for various cell processes. 2. Volume-activated Cl- channels show all outward rectification. Iodide is more permeable than chloride. In some cell types, ICl,vol inactivates at positive potentials. Single channel conductance can be divided mainly into two groups: small (< 5 pS) and medium conductance channels (around 50 pS). 3. The pharmacology and modulation of these channels are reviewed in detail, and suggest the existence of an heterogeneous family of multiple volume-activated Cl- channels. 4. Molecular candidates for this channel (i.e. ClC-2, a member of the ClC-family of voltage-dependent Cl- channels, the mdr-1 encoded P-glycoprotein, the nucleotide-sensitive pICln protein and phospholemman) will be discussed.

Publication types

  • Review

MeSH terms

  • Animals
  • Cell Division / physiology
  • Chloride Channels / physiology*
  • Humans
  • Ion Channel Gating / physiology

Substances

  • Chloride Channels