GABA receptors precede glutamate receptors in hypothalamic development; differential regulation by astrocytes

J Neurophysiol. 1995 Oct;74(4):1473-84. doi: 10.1152/jn.1995.74.4.1473.

Abstract

1. The developmental changes in gamma-aminobutyrate (GABA)-, glutamate-, and glycine-mediated currents in cultured embryonic neurons (n = 134) from rat hypothalamus were studied with the use of whole cell voltage-clamp recording. 2. GABA-evoked currents were detected in neurons cultured from 15-day embryos (E15) a few hours after plating. Every neuron studied from the time of plating at E15 to 2 wk later responded to GABA (30 microM). The peak and steady-state currents evoked by GABA increased by four- to fivefold within 2 wk in culture. The time constants of the desensitization of GABA currents did not change during this period. The properties of the responses to GABA were not altered by different culture densities or substrates. 3. Glycine activated receptors that were pharmacologically distinct from GABA receptors on hypothalamic neurons. The glycine responses increased by > 50-fold within 2 wk in culture. The percentage of cells responding to glycine (500 microM) was 20% at 0 days in vitro (DIV), and increased to 100% at 6 DIV. Astrocytes increased both the amplitude of glycine-mediated currents and the percentage of cells responding to glycine. 4. Glutamate-mediated currents developed later than GABA-mediated currents. The percentage of cells responding to glutamate (500 microM) increased within the 1st wk, from 20% on the day of plating to 100% after 6 DIV. Both the peak currents and the steady-state currents mediated by glutamate increased by 20-fold during the 2 wk in culture. Both the amplitude of the responses to glutamate and the percentage of cells responding to glutamate were increased by growing neurons either on an astrocyte substrate or in high-density cultures. 5. The currents and conductance changes elicited by GABA were greater than those generated by glutamate or glycine throughout the period examined. This difference was particularly evident in younger cells. After 3 days in vitro, GABA (30 microM) elicited a mean current of 1,648 pA, whereas glutamate (500 microM) only elicited a 266-pA current, and glycine (500 microM) elicited a 278-pA current from neurons growing on an astrocyte layer. 6. The expression of amino acid receptors was heterogeneous among hypothalamic neurons in younger cultures. Whereas all neurons expressed GABA receptors, some developing neurons did not express detectable glutamate receptors or glycine receptors. 7. Each of the three amino acid-evoked currents increased from E15 (1 DIV) to E20 (1 DIV), indicating an intrinsic development in the expression of the amino acid receptors in vivo. The GABA, glutamate, and glycine currents at E15, 10 DIV were similar to the currents at E20, 5 DIV (both 25 days after conception), suggesting parallel developmental patterns for amino acid receptor expression in vitro and in vivo. 8. Together, these data suggest that GABA may play a major role in early development because hypothalamic neurons are more sensitive to GABA than to either glutamate or glycine. However, glutamate and glycine receptors appear more sensitive to regulation by the local environment than GABA receptors because culture density and the astrocyte substrate have greater inductive effects on glutamate and glycine receptors than on GABA receptors.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Astrocytes / physiology*
  • Cell Count
  • Embryonic and Fetal Development
  • Hypothalamus / cytology
  • Hypothalamus / embryology*
  • Hypothalamus / metabolism*
  • Neurons / cytology
  • Neurons / physiology
  • Patch-Clamp Techniques
  • Rats / embryology
  • Rats, Sprague-Dawley
  • Receptors, Amino Acid / metabolism
  • Receptors, GABA / metabolism*
  • Receptors, Glutamate / metabolism*
  • Receptors, Glycine / metabolism

Substances

  • Receptors, Amino Acid
  • Receptors, GABA
  • Receptors, Glutamate
  • Receptors, Glycine