Persistence of the releasable pool of CCK in the rat nucleus accumbens and caudate-putamen following lesions of the midbrain

Brain Res. 1997 Feb 7;747(2):290-6. doi: 10.1016/s0006-8993(96)01238-3.

Abstract

Previous studies have identified populations of dopamine neurons in the midbrain that colocalize cholecystokinin some of which project to the nucleus accumbens and caudate-putamen. The contribution of dopamine-colocalized peptide to the total releasable pool of cholecystokinin in these brain regions was investigated using microdialysis. Dopamine, dihydroxyphenylacetic acid and cholecystokinin immunoreactive levels in dialysates of the posterior medial nucleus accumbens and medial caudate-putamen were determined following 6-hydroxydopamine lesions of the ventral tegmental area and substantia nigra or transection of the medial forebrain bundle. An 89-99% depletion in basal extracellular dihydroxyphenylacetic acid and an 87-99% decrease in veratridine-evoked extracellular dopamine levels was observed in the nucleus accumbens and caudate-putamen, 4 weeks after 6-hydroxydopamine lesion. No statistically significant difference was observed between lesioned and control animals in the basal or veratridine-evoked extracellular level of cholecystokinin immunoreactivity in either region. Similarly, transection of the medial forebrain bundle failed to significantly deplete the releasable pool of cholecystokinin immunoreactivity in the nucleus accumbens or caudate nucleus despite 89-99% depletions of dopamine and its metabolite. These data suggest that midbrain dopamine or non-dopaminergic cells are not the primary source of releasable cholecystokinin in the posterior medial nucleus accumbens and medial caudate-putamen measured by microdialysis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Caudate Nucleus / metabolism*
  • Cholecystokinin / metabolism*
  • Male
  • Mesencephalon / physiology*
  • Microinjections
  • Nucleus Accumbens / metabolism*
  • Oxidopamine
  • Putamen / metabolism*
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Oxidopamine
  • Cholecystokinin