Assessment of frequency-dependent alterations in the level of extracellular Ca2+ in the synaptic cleft

Biophys J. 1997 May;72(5):2103-16. doi: 10.1016/S0006-3495(97)78853-2.

Abstract

The synaptic cleft may be represented as a very thin disk of extracellular fluid. It is possible that at high stimulation frequencies the interval between pulses would be insufficient for diffusion of Ca2+ from the periphery of the cleft to replace extracellular Ca2+ depleted at the center of the cleft as a result of activation of postsynaptic, Ca2(+)-permeable channels. Computer modeling was employed to assess the impact of activation of glutamate receptor channels (GRCs) in the postsynaptic membrane on the level of extracellular Ca2+ within the synaptic cleft. The model includes calcium influx from the synaptic cleft into the postsynaptic compartment through GRC and calcium efflux through calcium pumps and Na/Ca exchangers. Concentrations of extracellular Ca2+ inside the cleft are estimated by using a compartmental model incorporating flux across the postsynaptic membrane and radial diffusion from the edges of the cleft. The simulations suggest that substantial extracellular Ca2+ depletion can occur in the clefts during activation of GRCs, particularly at high stimulation frequencies used to induce long-term potentiation (LTP). Only minimal transitory changes in extracellular Ca2+ are observed at low frequencies. These frequency-dependent alterations in extracellular Ca2+ dynamics are a direct reflection of the activity of GRCs and could be involved in the modulation of presynaptic function via a retrograde messenger mechanism, if there are extracellular Ca2+ sensors on the presynaptic membranes. The recently cloned extracellular Ca2(+)-sensing receptors that are known to be present in nerve terminals in hippocampus and other areas of the brain could potentially play such a role.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Calcium / metabolism*
  • Cell Membrane Permeability
  • Computer Simulation*
  • Diffusion
  • Membrane Potentials
  • Models, Biological*
  • Synapses / physiology*
  • Time Factors

Substances

  • Calcium