Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons

J Neurosci. 1998 Sep 1;18(17):6822-9. doi: 10.1523/JNEUROSCI.18-17-06822.1998.

Abstract

Astrocytes exhibit a form of excitability and communication on the basis of intracellular Ca2+ variations (Cornell-Bell et al., 1990; Charles et al., 1991) that can be initiated by neuronal activity (Dani et al., 1992; Porter and McCarthy, 1996). A Ca2+ elevation in astrocytes induces the release of glutamate (Parpura et al., 1994; Pasti et al., 1997; Araque et al., 1998;Bezzi et al., 1998), which evokes a slow inward current in neurons and modulates action potential-evoked synaptic transmission between cultured hippocampal cells (Araque et al., 1998), suggesting that astrocytes and neurons may function as a network with bidirectional communication. Here we show that a Ca2+ elevation in astrocytes increases the frequency of excitatory as well as inhibitory miniature postsynaptic currents (mPSCs), without modifying their amplitudes. Thapsigargin incubation, microinjection of the Ca2+ chelator BAPTA, and photolysis of the Ca2+ cage NP-EGTA demonstrate that a Ca2+ elevation in astrocytes is both necessary and sufficient to modulate spontaneous transmitter release. This Ca2+-dependent release of glutamate from astrocytes enhances mPSC frequency by acting on NMDA glutamate receptors, because it is antagonized by D-2-amino-5-phosphonopentanoic acid (AP5) or extracellular Mg2+. These NMDA receptors are located extrasynaptically, because blockage specifically of synaptic NMDA receptors by synaptic activation in the presence of the open channel blocker MK-801 did not impair the AP5-sensitive astrocyte-induced increase of mPSC frequency. Therefore, astrocytes modulate spontaneous excitatory and inhibitory synaptic transmission by increasing the probability of transmitter release via the activation of NMDA receptors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 2-Amino-5-phosphonovalerate / pharmacology
  • Animals
  • Astrocytes / metabolism*
  • Calcium / metabolism*
  • Cell Communication / drug effects
  • Cells, Cultured
  • Dizocilpine Maleate / pharmacology
  • Excitatory Amino Acid Antagonists / pharmacology
  • Excitatory Postsynaptic Potentials / drug effects
  • Neurons / physiology*
  • Patch-Clamp Techniques
  • Rats
  • Receptors, N-Methyl-D-Aspartate / antagonists & inhibitors
  • Receptors, N-Methyl-D-Aspartate / physiology*
  • Synaptic Transmission / physiology*

Substances

  • Excitatory Amino Acid Antagonists
  • Receptors, N-Methyl-D-Aspartate
  • Dizocilpine Maleate
  • 2-Amino-5-phosphonovalerate
  • Calcium